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SOME APPLICATIONS OF
HENKIN QUANTIFIERS'

BY
JON BARWISE?

ABSTRACT

We show how to approximate a Henkin formula by first order formulas. This
method of approximation is then applied to problems of axiomatizing classes of
structures. :

1. Introduction

Let L be a first order language with a finite* number of nonlogical symbols and
let % be a class of L-structures. ¥ is compact if, for any set S of sentences of L,
if every finite subset of S has a modelin ¥ then § itself has a modelin . A set T
of sentences of L is a set of axioms for (the first ordered properties of) X if, for
all sentences ¢ of L, ¢ is true in all M € I iff T+ ¢. Notice that the following are
obviously equivalent:

a) X is compact and T is a set of axioms for X ;

b) A set S of sentences has a model in X iff T U S is gonsistent;

¢) ¥ is compact and, for any L-structure IR, I is a model of T iff there is an
NeH with M=N.

A class X is nearly axiomatizable if it is compact and has a recursive set of
axioms for its first order properties. Less precisely, but more dramatically, X is
nearly axiomatizable if there is a recursive set T of axioms of L which can be
added to the standard first order axioms so that the Goédel Completeness and
Compactness Theorems hold when ““model” is taken to mean “model in ¥ .

In this paper we describe a simple method, which we call “‘straightening out
Henkin quantifiers”, for finding explicit axioms for classes # which, on some
grounds, can be seen to be nearly axiomatizable. Historically, the following fact

' Dedicated to the memory of Abraham Robinson.
* The author is an Alfred P. Sloan Fellow.
§ The results of this paper extend to countable languages. See Remark 2.6 in [2].
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(1.1) has made it much easier to see that a given class ¥ is nearly axiomatizable
than to actually find an explicit set of near axioms.

LemMa 1.1.  Let X be a class of L -structures, ¥ is nearly axiomatizable if there
is a recursive expansion L' of L and a recursive set T' of L'-sentences with the
following property : for all sets S of L-sentences, S has a model in X iff SU T’ is
consistent.

Proor. X is clearly compact. The set of theorems of T’ in the language L is
R.E., by the completeness theorem, so has a recursive set T of axioms, by the
well known result of Craig [5]. O

We developed the method discussed in this paper in the course of working out
a special case (Open problem 11, p. 513, in Chang—Keisler [3]): find an explicit
set of axioms for the class ¥ of models (M, U,--+) where Card(M)z= 2,
(Card(U)). The theorem of Vaught [18], with 1.1, makes it clear that this ¥ is
nearly axiomatizable. Our solution to this problem, and some refinements of
Vaught’s Theorem which are consequences of it, appear in [1]. A different
solution was obtained independently, and a few weeks earlier, by J. Schmerl
{16].

2. How to straighten out a Henkin quantifier

A Henkin formula H(z) (the boldface z indicates a finite sequence z, - - - z, of
variables) is an expression of the form

Vx13y1
Vx, 3y,

L ¢(Z, xla )h, Y xm Yn)’

Vx,3yn

where ¢ is an ordinary first order formula. The formula H(z) is read “for all
X, -, X, there exist y,, - -+, y.» with y; depending only on the sequence x; such
that ¢ (z, x1, ¥1, - * -, X, ya).”” Thus, the semantics of Henkin formulas is given by:
M= H(z) iff there are functions G,,---, G, (of the appropriate number
of arguments) such that (M, G,---G.) is a model of Vx,---Vx,
& (z, x1, Gi(x)), - *, X0y, Gu (X))
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Henkin quantifier prefixes were introduced in Henkin [9] and studied in
Enderton [7] and Walkoe [19]. The importance of Henkin formulas for our
purposes is that:

a) any recursive T’ as in Lemma 1.1 can, theoretically at least, be expressed
by a Henkin sentence of L;

b) it is easy to axiomatize the first order consequences of a Henkin formula.
Contention (a) is justified by the following two theorems.

THeoreM 2.1. (Kleene [13]). Let L’ be a recursive expansion of L and let T'
be a recursive theory of L'. There is a single second order 3 sentence ARY(R) of
L such that, for any infinite L-structure IR, M is a model of ARY(R) if and only if
some expansion ' = (IR, ---) of M is a model of T".

Having now defined 2] formula, we can observe that every Henkin formula is
equivalent to a 2| formula. Rather surprisingly, the converse is also true.

Tueorem 2.2. (Enderton [7], Walkoe [19]). Every 3} formula 3RY(R, z) of
L is equivalent to a Henkin formula H(z) of L.

We won’t actually use the above theorems. They are included for moral
support in our search for Henkin formulas expressing theorems T’ as in 1.1.
Actually, we seldom express the entire T’ by a single Henkin sentence, but
rather use sets of Henkin formulas.

MaiN DeriniTION.  Given a Henkin formula H(z) =

Vx 3y,

bd(z XL Y X V)

Vx.3y.

as above, we define its first-order approximations as follows. First some notation
to make the formulas more readable. We use y for y,,- - -, y, and ¥ for x,, - -, x,,.
We add new superscripts to variables freely, writing y' for yi,---, y» and
similarly for y? etc. We write ¥' for the sequence x}, - - -, x} and similarly for £,
etc. We write y' = y” for the conjunction (yi = yia -+ - ay,=y2). We think of y'
and y* as first and second choices for the sequence y.

First approximation:

Vxi---Vx Ayl Ayrd(z, xL, yhL Xy
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or, more simply, using the above notation,
Vi'3y'd(z, %, y").
Second approximation:
Vi'3y'VEy? [d(z, ', y)Ad(z, B, y)A Aisisa (xi = x>yl = yI)].
k-th approximation:
VE3y'-- Vi Iy  [Ad(z, ) AA(x] = x>yl = y))],

where the first big conjunction ranges over j between 1 and k (1 =j = k) and the
second ranges over i between 1 and n, and over j and j’ between 1 and k.

We collect some obvious facts in the next lemma. We will use these pretty
much without comment later on.

LEmMMA 2.3.

i) The (k + 1)-th approximation to H(z) logically implies the k -th approxima -
tion.

ii) The Henkin formula H(z) logically implies each of its approximations.

iit) The set of approximations to H(z) is (primitive) recursive.

Proor. Obvious. O

The converse of 2.3 (ii) is not valid except on resplendent structures. We refer
the reader to Barwise-Schlipf [2] for the few simple facts we use about
resplendent’ models. The notation M < ;1N indicates that M < N and that for
any 2} formula with parameters from I% which holds in < also holds in .

THEOREM 2.4. Let M be a structure for L. The following are equivalent*:
i) M is resplendent; i.e., for all N, M <N implies M < N
it} For each Henkin formula H(z), M is a model of

Vz[H(z)< AAppu(z)],
where Appu(z) is the set of first order approximations to H(z).

Proor. The implication (ii) = (i) is immediate by Theorem 2.2. To prove

' All saturated and special models are resplendent (see theor. 5.3.1 and ex. 5.3.5 in
Chang—Keisler [3]) so the reader is welcome to use these notions in place of resplendence below. This
is really making life harder, however, since it is easy to see that resplendent models exist in all
powers. See {2].

* The condition given in (i) is not the correct definition of resplendence if L is countable infinite.
The implication (ii)~— (i) is the only result of this paper which does not hold for countable languages.
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(i) > (ii), we use the [I1} reflection principle for resplendent models, due to
Schlipf [15] and found as 2.4 (vi) of [2]. This states that any II; formula (the dual
of a 3| formula) which holds in I of some z also holds in some (actually all)
countable, recursively saturated elementary submodels of M. Thus it suffices to
assume that IN is countable, recursively saturated, satisfies Appx(z) and prove
that M= H(z).We simplify the notation in the proof by considering a simple but
typical case, namely where H(z) is:

Vx13y1

b (z, x1, y1, X2, ¥2).
Vx,3y.

The first couple of approximations, written out in detail, are:

First approximation: Vxix}3ylylé(z, xi, yi, x3,y3)

Second approximation: Vxix;3yly:Vxixi3yly: é(z, x1, yi, X2, y2)A
82 % yhxh yDaGxl = rim i = yha(xd = xim yi= yd)

Let ¢(z) be the k-th approximation. Let ¢ri(z, x1, yi, x7, y}) be the result of
stripping the first four quantifiers Vxix:;3yly) from ¢¥(z). In fact, let
Ui (z,x1, - -+, y5') be the result of stripping the first four quantifiers off ¢, at
least if i + 1 = k. The formula ¢ has had all the quantifiers (except those hidden
in ¢) stripped off so we let ¢+ be ¢« for i = k. Notice that ¢; and ¢ have the
same free variables and that if k'Z  then - logically implies . Given all this
notation, we can begin the proof in earnest. Let

(*) (ai, az), (ai,a3),- -, {al,az), -~
be an enumeration of the countable set M X M. We want to define a sequence
(*+) (b1, b2), (b1, b3), - -+, (bl b3), - -
such that, for each i,
(1) ME ¢d(z,ai, b}, al bi)
and such that the expressions
Gyai)=bi, and Gy(as)=b;

define functions G,, G, from M into M, which will show that M= H(z). To
make sure that the above expressions make G, and G. well-defined, we need to
satisfy the following conditions as we define the sequence (¥x):
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I

) af
(3) aj
The first order approximations of H(z) are designed to insure that (1)-(3) can be
fulfilled. The sequence (**) is defined by induction. Since I = Appx(z), since N

is recursively saturated, and since ¢ i- implies ¢ for k' = k, there is a pair (b}, b3)
such that I is a model of

aj implies b =5}, and

il

ai implies b = bj.

‘Jl’l((z5 alv }7 a;’ b;)’
for all k. By the same argument, we can find (bi, b}) such that I satisfies
(//L(Z,a}, i’a;,b;7.-.’ali’b{,azi’bZi),

for all k. Given the meaning of ¢, we see that the sequence does indeed satisfy
1)-(3). O

The following sequence of corollaries is not directly related to the method we
are discussing, but is included to show that the Craig Interpolation Theorem is a
simple consequence of Theorem 2.4.

CoroLLARY 2.5. Let I be a resplendent model and let H\(z) and Hx(z) be
Henkin formulas which define disjoint relations on IR. There are approximations
0.(z) and 0,(z) of H, and H. such that 6, and 8, define disjoint relations on M.

Proor. Thisis immediate from 2.4. |

CoroLLARY 2.7. (Craig Interpolation Theorem). Let %, and %, be disjoint 3.}
definable classes of L-structures. There is an elementary X (definable by a single
sentence of L) containing ¥, and disjoint from ¥,.

Proor. By 2.2 we may assume that ¥, is defined by a Henkin sentence H..
We claim that there is some approximation of H,; whose class & of models
separates ¥, from J>. If not, then the set Appsx, U Apps, is consistent and hence
has a resplendent model . But then, by 2.4, M is in both ¥, and ¥-. O

For simple applications of the method of straightening out a Henkin quantifier
(as in Section 3), Theorem 2.4 will suffice. For more complicated examples (as in
[2] especially, but also in Section 6), it behoves us to prove a result which allows
us to piece an infinite number of Henkin formulas together.

TaeorREM 2.8. Let {H.(z, " z;m)|n <)} be a recursive set of Henkin
formulas of the form H,(z)=



Vol. 25, 1976 HENKIN QUANTIFIERS 53

Vx,3y,

; (b'l(z’ X1, Y1, 7" 7, xg(")’ ys("))7

ng(n)ayg(n)

where f and g are nondecreasing recursive functions and where ($n.,— @) is
logically valid. Let M be a resplendent model of each formula 3zH,(z). Then M
is a model of :

-

Vx, 3y,

3z za 0 ) YV Tyeom Anco®n(z, X5, y1,0 7).

\

Proor. Introduce a recursive expansion L' of L by adding constant symbols
€1, C2, - - - and function symbols Gy, G,, - - and consider the theory T' whose
axioms are all expressions of the form

Vxi o Vagoda(cn, - o, Gy, X1, Gi(X1), 7 5 Xe(nyy Goim(Xgm)-

The hypothesis implies that the theory Th(IR) of M is consistent with each finite
subset of T". Since I is resplendent, I can be expanded to a model of T', by [2],
2.4 (v). But this is exactly the meaning of the conclusion of the theorem. O

3. The first order properties of models with involutions

An involution is simply a nontrivial automorphism f of order 2, f* = identity.
We illustrate the method of axiomatizing nearly axiomatizable classes with the
simple case where X is the class of all L-structures with involutions.

LemMmA 3.1. The class of models with involutions is nearly axiomatizable.

Proor. This follows immediately from Lemma 1.1 since S has a model with
an involution if and only if S is consistent with the following sentence involving a
new symbol f:
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z(fz# z) AVx, y [ffx = x A[xEy < fxEfy)].

We are treating the special case where L has only one binary symbol E, but an
obvious modification takes care of the general case. d

Having restricted ourselves to the special case where L has only a single
binary symbol in the above proof, we might as well continue to treat this special
case below.

Lemma 3.2. A structure I has an involution iff it is a model of AzH(z),
where H(z) is:

Xo=2Z>yo# 2z
onﬂyo } ) Xo= X1 YYo= W

Vx, 3y, xoEx,; < yoEy,

X1 = Yo Y1 = Xo.

Proor. First write out the Skolem form of H(z) as a formula involving two
unary functions G, and G,. The second conjunct in the matrix of H(z) implies
that G, = G,. Rewriting it with one symbol G it says exactly that G is an
involution with G (z) # z. |

All we would have to do now is to straighten out 3zH(z). On doing so,
however, one notices that the theory can be made more understandable by
changing bound variables, throwing in some redundant conjuncts and permuting
some quantifiers.

DerINITION.  Let Inv be the first order theory whose axioms are all prenex
sentences beginning with a quantifier string

IzVxodyoVx, Ay, - - - Vi Ay
followed by a conjunction of formulas of the following forms:
(xi=z—-y#z)
(i =x—=y:=y)
(yi=x—=y =x)
(x.Ex; & y:Ey;).

THEOREM 3.3.  Any structure IR with an involution is a model of Inv. Any
resplendent model of Inv has an involution.
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Proor. Let f be an involution of I, f(z) # z. For any x: pick y; = f(x:). This
clearly makes all the above conjunctions true. Now let IR be a resplendent model
of Inv, and let H(z) be as in 3.2. Consider any sentence of the form Izy(z),
where € Appu(z). This sentence has the form

EZVXQX13YOY1VX2X33)72Y3 T szkx2k+13)’2k)/2k+1

followed by a conjunction of formulas as above. Since Vx;3y;Vx;., Ay, is
stronger than Vxx..,3y.yi.,, 3z (z) is implied by a sentence of Inv. Thus M is a
model of each such 3z¢(z). By the recursive saturation of IR, there is a z such
that M= Appx(z). By Theorem 2.4, M H(z), so M has an involution, by 3.2.
d
CorOLLARY 3.4." The theory Inv is a set of axioms for the first order properties
of models with involutions.

Proor. This is an immediate consequence of the above theorem and the fact
that every model has a resplendent elementary extension, see [2]. O

It is fairly obvious that no model of ZFC, Zermelo-Fraenkel set theory with
choice, has an involution. Hence ZFCF—#, for some 6 € Inv. What is the
simplest such 67 On the other hand, Cohen [4] proves that ZF does have models
with involutions. Would it be any simpler to prove directly that ZF is consistent
with each axiom of Inv.

Actually, in the case of ZF, Theorem 3.3 can be improved. One can show that
any countable non-w-model of ZF + Inv has an involufion, even those that are
not recursively saturated. (This follows directly from theor. 2.7 in the appendix
of [0], plus the observation that, for ZF, the existence of an involution is a
strict-Z; statement, not just X}, and hence is IIY on Covy, for I countable.)
Friedman has recently obtained much stronger results on models of ZF with
involutions.

There is nothing sacred about automorphisms of order 2 in all of the above.
We could equally well have axiomatized the first order properties of models with
automorphisms of order 33. One would just replace the third sort of conjunct
above with those of the form

[(xi33 = ynz) A (xizz = )’m) A (xiz = yl'l)_) (yl'.u = xil)]'
' Shelah informs me that he discovered this resuit some years ago in response to an open

problem list in a preprint version of Chang-Keisler [3]. Both the problem and its solution seem to
have disappeared in the final version.
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4. The first order properties of homomorphisms which have splittings

Let f be a homomorphism of I onto N, where M and N are L -structures. We
can think of the homomorphism f as the structure (I, N, f) for a two-sorted
logic L*. We use x’s (with sub and superscripts) for variables over I and y’s for
variables over M.

A splitting for a homomorphism f from I onto N is an embedding g of N into
IR such that f(g(y))=y, for all y EN.

Lemma 4.1, The class of homomorphisms which have splittings is definable by
a 3, sentence and hence is nearly axiomatizable.

In this section we axiomatize those first order properties which must hold of all
homomorphisms which have splittings. Or, looked at negatively, we axiomatize
those first order properties P such that “not P” can obstruct the existence of a
splitting.

LemMMAa 4.2. f has a splitting iff (N, N, f) is a model of the following Henkin
sentence

Yo= Y1 Xo= X1

] f(xo0)=yo

R(yo, y1) ™ R(xo, x1).

Vyoaxo
Vy,ax,

(We are treating the case where L has only one binary R to illustrate the
lemma.)

Proor. The first line makes the two Skolem functions one, the second makes
this function an inverse to f and the third makes it a homomorphism. It must of
necessity be one-one. ]

Now we simply straighten out the above Henkin sentence.

DEerINITION.  Let Spl be the first order theory of L* whose axioms are all
prenex formulas beginning with a quantifier string

VyodxVy,Ax,-- - Vy Ix,
followed by a conjunction of formulas of the following forms:
(yi=y—=>x=x)
(f(x)=y:)
(R(ys yi) = R(x;, x;)).
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A typical consequence of Spl is the sentence

Vxox [R(xo, x:)Af(x0) = f(x1)— R (x0, Xo)v R (x4, x,)].

THEOREM 4.3. Let f be a homomorphism such that (IR, N, f) is resplendent.
Then f has a splitting iff (M, N, f)E=Spl.

Proor. The proof is entirely analogous to the proof of Theorem 3.3. O

CoroLLARY 4.4, Spl is a set of axioms for the first order properties of
homomorphisms with splittings.

Proor. Immediate from 4.3 and the existence of resplendent models. O

5. Multiplicative groups of fields

Let G = (G,-,”", 1) be an abelian group, written in multiplicative notation. Let
G U {0} be the structure G with a zero element adjoined. To be definite, G U {0}
is the structure (G U{0},-,7%,1,0) with 0-x =x-0=0, for all x, and 07" =0, or
07! undefined, if you don’t mind partial functions. We identify G with G U {0}.
Fuchs [8], problem 69, asks for a necessary and sufficient condition for G to be
the multiplicative group of some field, i.e., for there to exist some binary
function + on G U{0} so that the expanded structure is a field. Sabbagh [14]
shows there is no first order solution to this problem by showing that the
multiplicative group of real numbers is elementarily equivalent to a group which
is not the multiplicative part of a field. This suggests the problem of finding the
axioms for those G such that some G'= G is the multiplicative part of a field.
This is a natural for the method of straightening out Henkin quantifiers.

Lemma 5.1.  The class of structures G U {0} such that G is the multiplicative
part of some field is definable by a 3.} sentence, and hence is nearly axiomatizable.

Before beginning our axiomatization, we should point out some sentence true
of all such groups which is not true of all abelian groups. For example, the
sentence expressing

“there are at most n x such that x" = 1"
holds in the multiplicative part of any field.

LemMMa 5.2.  An abelian group G is the multiplicative part of some field F iff G
is a model of the following Henkin sentence:
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[ Aij(xi= x>y =)
Vx, 3y,
: (xi=0—>y,=1)

(x2=y1—=y2= x1)
Vxs3dys

| (52 OAGra = yi- yIA(ra = XA (xs = 517 5= (93 = %27 y3).

Proor. 1If you write out the Skolem form of this sentence, you notice that all
five functions are equal, say to g, by the first line. The next three lines express,
respectively,

g(0)=1
g(g(x))=x, for all x

g(g(x)-g(y)=y-g(x-g(y™), forall x andall y#O.

If G is the multiplicative part of some field, then g(x)=1— x satisfies all the
above. On the other hand, Dicker [6] shows that if G U {0} has a g satisfying the
above, then G is the multiplicative part of a field. 0
We could have written out the natural Henkin sentence expressing the
existence of a binary function + which is an Abelian group and distributes
properly with respect to -, but this is a much more complicated sentence.

DerNniTioN.  Let Fld be the set of first order approximations to the Henkin
sentence given in 5.2, plus the axioms for abelian groups.

By now there is no point in writing Fld out more explicitly, especially since it is
largely unintelligible. Still, it does solve the problem.

THEOREM 5.3. Let G be a resplendent group. Then G is the multiplicative part
of a field F iff G is a model of Fld.

CoroLLARY 5.4. FId axiomatizes the first order properties of those G which are
the multiplicative parts of fields.

CoroLLARY 5.5. If G is finite, or if G is countable and recursively saturated,
then G is the multiplicative part of a field iff G =Fld.

Proor. In either case G is resplendent, by [2], so the result follows from 5.3.

O

Problem. What are all the resplendent abelian groups?
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6. The first order properties of pairs of cardinals

The examples in the previous sections were chosen for their simplicity and
relevance to genuine mathematical problems. In this section we present the
archetypal example of a nearly axiomatizable class because it will serve as a good
introduction to the problem we discuss in [1].

We assume that the basic language L has a unary symbol U. An L structure
M= (M, U,---)is a two cardinal model if Card(M)> Card(U) = N,. Vaught [17]
proved that any theory S with a two cardinal model has one with Card(M) = R,
and Card(U) = N,. His proof also gave the following:

LemMMmA 6.1. The class of two cardinal models is nearly axiomatizable.

Proor. Vaught’s proof shows that S has a two cardinal model iff S has a
model MM with an P, < M, M, # M and U™ = U™, It is easy to write this down
as a recursive theory in an expansion L' of L with a new unary symbol M,. The
result follows from 1.1. The real trick to axiomatizing this class, though, as
noticed by Keisler, is to use a stronger condition. Vaught’s proof also shows that
S has a two cardinal model iff S has a model I with an M, as above but with
=M, O

Knowing 6.1, Vaught asked for an explicit set of axioms for two cardinal
models. These were given by Keisler {12]. We show how to get a similar set of
axioms by straightening Henkin formulas.

LEMMA 6.2. Let M= (M, U,---) be a resplendent L-structure. The following
are equivalent:

i) I is isomorphic to some proper elementary submodel M, = (M,, U, - - -) with
the same U.

il) For each finite set s of formulas of L, M is a model of 3zH,(z), where H,(z)

is the following Henkin formula (s = s(x,---x,) is assumed to have its free
variables among x,- - - x.):
Vx.dy, ( AN =x—=>y=y)
- J ()’1 # Z)
Vx,3y, (Uurx,=v—>y,=u)
Yu3dv J A.[,es(ll/(xl'"xn)_)l//(yl'..y"))‘
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Proor. To prove (i) = (ii), let P be a proper elementary submodel of IN
with the same U and let f: MM =P, Let z € M — IM,. To show that P is a model
of H,(z), choose y, as f(x;) and, for u € U, choose v = f'(u). To prove
(ii) = (i), we use Theorem 2.8. By that result, there is a z € M such that D is a
model of:

Vudo (A= y=y)
VX13y1 (Y1?£l)

% (U@rx,=v—>y =u)

Vx.3y,

ANper(Pxi X)) > Py Yn))-

This asserts the existence of two functions f, g such that f is an elementary
embedding of M into itself with z & range(f), and such that for all u € U,
f(g(u)) = u. Thus U is in the range of f so if we let i, be the range of f, we have
). O

DeriNITION. Let Vau be the first order theory whose axioms are all prenex
formulas beginning with a quantifier string
FzVxu,dyv; - - Vxu,dy.o,
followed by a conjunction of formulas of the following forms:
(i =x—=>y=y)
(= u—>v=1v)
(Uurxi=vi—=y = w)
(v:i# 2)
(P(xr- - xa) = (yee - ya))-

This is not exactly the set of axioms arrived at in Keisler [12], but they are clearly
equivalent.
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THEOREM 6.3. Let M= (M, U,---) be a resplendent structure. The following
are equivalent:

i) IR is elementarily equivalent to a two cardinal model.

iiy MEVau.

iii) I is isomorphic to a proper elementary submodel of itself with the same U.

iv) IR has a proper elementary submodel with the same U.

Proor. The main implication, given Vaught’s work, is (ii) = (iii). So assume
(ii). As in the previous results (3.3, 4.3) it is easy to see that each formula of the
form 3zy¢(s), for ¢ in some Appu,(z), is implied by some formula in Vau. This
just amounts to permuting quantifiers. Thus, by 6.2, (iii) holds.

To prove (iii) = (ii), let f be the elementary embedding, z¢& rng(f). Let
y: = f(x;) and, for u; € U, let v; = f~'(w;). This shows that I Vau.

The implication (iii) = (iv) is trivial. The implication (iv) = (i) follows from
the result of Vaught mentioned in the proof of 6.1. This leaves us with the proof
of (i) = (iii). Let T" be the theory in an expansion of L with unary M, and unary
f expressing that I, < I and f: I = D, By the second result of Vaught used in
6.1, Th(M) is consistent with T". Since I is resplendent, some expansion of IR is
amodel of T”, by 2.4(v) in [2]. Thus (iii) holds. O

COROLLARY 6.4. Vau is a set of axioms for two cardinal models.

Proor. Immediate from 6.3. )

Gregory, in a recent paper in the JSL, has found a much better set of axioms,
but he has to work much harder, too.

CoroLLARY 6.5. Let IN be a countable, recursively saturated model of Vau.
There is an elementary extension ' of M of power N, such that UM = U™

Proor By [2], M is resplendent and homogeneous. By 6.3, M is isomorphic
to a proper elementary extension of itself with the same U. By the usual proof of
Vaught’s Theorem, as given in Chang-Keisler [3], for example, we can build ¢
as the union of an w;-chain of structures each isomorphic to Jt. O

7. Game sentences and other concluding remarks

Once we have the set of axioms for a nearly axiomatizable class %, it is usually
easy to see that they do indeed provide a set of axioms, without ever considering
Henkin formulas. We have deliberately presented our examples in a way which
emphasizes the way Henkin formulas help us find the axioms in question. The
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only problem that can arise, as illustrated in section 6, is that it may not be at all
obvious how to go from a particular T’ (as in Lemma 1.1) to a Henkin formula.

The idea of approximating Henkin formulas was suggested to us by some
analogous results of Keisler [10] on approximating certain types of infinitary
game formulas by means of finite expressions, on saturated models. (Keisler
used his approximations to prove certain preservation theorems, in [11]. It is not
difficult to see how to prove his results via resplendent models and Henkin
formulas, in a similar way.) The game formula (more accurately recursive closed
game formula) associated with the Henkin formula H(z)

Vx13y1

r ¢(za xl’ yl, A xn, Yn)

Vx,3y.

is the natural limit of the finite approximations defined in section 2. That is, it is
the “formula” %(z) with infinite quantifier prefix

Vx'3y'---Vx3y*-.-

and whose matrix consists of the conjunction of all ¢(z, £'y’) and all (x| =
x{"— yi = yi). The proof of 2.4 shows that on countable structures I, M= H(z)
iff M 4(z). Combining this with Theorem 2.2, gives a simple new, and much
more explicit, proof of Svenonius’ Theorem to the effect that every 2, formula is
equivalent, on countable structures, to a recursive closed game formula. (See
theor. 6.8 of [0].) Our original proof of Theorem 2.4 went by means of proving
this directly and then using exercise 7.17 (iii) of [0]. It seemed more appropriate,
in a talk dedicated to Abraham Robinson, to deal with finitary first order logic,
without the detour through game formulas. Makkai suggested to us that this new
explicit form for Svenonius’ Theorem is important in its own right, and should be
pointed out here.
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