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SOME APPLICATIONS OF 
HENKIN QUANTIFIERS* 

BY 

JON BARWISE* 

ABSTRACT 

We show how to approximate a Henkin formula by first order formulas. This 
method of approximation is then applied to problems of axiomatizing classes of 
structures. 

1. Introduction 

Let L be a first order language with a finite w number  of nonlogical symbols and 

let ~ be a class of L-structures.  ~ is compact if, for any set S of sentences of L, 

if every finite subset of S has a model in K then S itself has a model in ~.  A set T 

of sentences of L is a set of axioms for (the first ordered properties of) ~ if, for 

all sentences & of L, & is true in all ~ E ~ iff T F- ~b. Notice that the following are 

obviously equivalent: 

a) ~ is compact  and T is a set of axioms for ~ ;  

b) A set S of sentences has a model in ~ iff T U S is,consistent; 

c) Yd is compact  and, for any L-structure ~ ,  ~ is a model of T i f f  there is an 

9 ~ E ~  with ~F~-= 9~. 

A class Yf is nearly axiomatizable if it is compact  and has a recursive set of 

axioms for its first order properties. Less precisely, but more dramatically, 9g is 

nearly axiomatizable if there is a recursive set T of axioms of L which can be 

added to the standard first order axioms so that the G6del  Completeness  and 

Compactness  Theorems hold when "mode l "  is taken to mean "model  in Yl". 

In this paper  we describe a simple method, which we call "straightening out 

Henkin quantifiers", for finding explicit axioms for classes K which, on some 

grounds, can be seen to be nearly axiomatizable. Historically, the following fact 

' Dedicated to the memory of Abraham Robinson. 
* The author is an Alfred P. Sloan Fellow. 

w The results of this paper extend to countable languages. See Remark 2.6 in [2]. 
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(1.1) has made it much easier to see that a given class ~ is nearly axiomatizable 

than to actually find an explicit set of near axioms. 

LEMMA 1.1. Let ~{ be a class of L-structures, ~{ is nearly axiomatizable if there 

is a recursive expansion L'  of L and a recursive set T' of L'-sentences with the 

following property : for all sets S of L-sentences, S has a model in ~( iff S t3 T' is 

consistent. 

PROOF. 5( is clearly compact. The set of theorems of T' in the language L is 

R.E., by the completeness theorem, so has a recursive set T of axioms, by the 

well known result of Craig [5]. [] 

We developed the method discussed in this paper in the course of working out 

a special case (Open problem 11, p. 513, in Chang-Keisler [3]): find an explicit 

set of axioms for the class ~ of models (M, U , . . . )  where C a r d ( M ) =  > ~  

(Card(U)).  The theorem of Vaught [18], with 1.1, makes it clear that this ~ is 

nearly axiomatizable. Our solution to this problem, and some refinements of 

Vaught's Theorem which are consequences of it, appear in [1]. A different 

solution was obtained independently, and a few weeks earlier, by J. Schmerl 

[16]. 

2. How to straighten out a Henkin quantifier 

A Henkin formula H ( z )  (the boldface z indicates a finite sequence z~. �9 �9 z~ of 

variables) is an expression of the form 

Vx13y~ 

Vx23y2 

Vx ,3y ,  

~(z, Xl, y , , ' " ,  x,, y,), 

where ~b is an ordinary first order formula. The formula H ( z )  is read "for  all 

x~, �9 �9 x, there exist y~, �9 �9 y, with y~ depending only on the sequence xi such 

that ~b(z, x~, yl," �9 ", x,, y , ) ."  Thus, the semantics of Henkin formulas is given by: 

~ - - H ( z )  iff there are functions G , - . . ,  G, (of the appropriate number 

of arguments) such that (~02, G 1 . . . G , )  is a model of V x l . . . V x ,  

t~(Z, Xl, a l ( x , ) , - -  ", Xn, Gn(Xn)). 
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Henkin quantifier prefixes were introduced in Henkin [9] and studied in 

Enderton [7] and Walkoe [19]. The importance of Henkin formulas for our 

purposes is that: 

a) any recursive T' as in Lemma 1.1 can, theoretically at least, be expressed 

by a Henkin sentence of L ;  

b) it is easy to axiomatize the first order consequences of a Henkin formula. 

Contention (a) is justified by the following tWO theorems. 

THEOREM 2.1. (Kleene [13]). Let L '  be a recursive expansion of L and let T' 

be a recursive theory of L '. There is a single second order E~ sentence 3RqJ(R ) of 

L such that, for any infinite L-structure T)~, T)~ is a model of 3RqJ(R ) if and only if 

some expansion Ts (TR, . . . )  of ~R is a model of T'. 

Having now defined E~ formula, we can observe that every Henkin formula is 

equivalent to a El formula. Rather  surprisingly, the converse is also true. 

THEOREM 2.2. (Enderton [7], Walkoe [19]). Every E] formula 3Rtk(R,  z )  of 

L is equivalent to a Henkin formula H ( z )  of L. 

We won't actually use the above theorems. They are included for moral 

support in our search for Henkin formulas expressing theorems T'  as in 1.1. 

Actually, we seldom express the entire T'  by a single Henkin sentence, but 

rather use sets of Henkin formulas. 

MAIN DEFINITION. Given a Henkin formula H ( z ) =  

Vx13y1 t 

Vx. 3y ,  

c~(z, xl, y,," " , x . ,  y.)  

as above, we define its first-order approximations as follows. First some notation 

to make the formulas more readable. We use y for yl, �9 �9 ", y. and ~ for xl, �9 �9 x,. 

We add new superscripts to variables freely, writing yl for y ~ , . . . , y l  and 

similarly for y2, etc. We write s for the sequence x11, �9 �9 x~, and similarly for s 

etc. We w r i t e y l = y 2 f o r t h e c o n j u n c t i o n ( y ~ l = y l ^ 2  . . . ^ y ~ = y 2 ) . W e t h i n k o f y l  

and y2 as first and second choices for the sequence y. 

First approximation : 

Vx[ . . .u  ~ ' ' ' n~b(z, x 1, y 1,- . . ,x~, y ~  
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or, more simply, using the above notation, 

V~3y~ ~b(z, ~ ,  yl). 

Second approximation: 

V~lTly'V.~23y 2 [ 6 ( Z ,  ~'t, y ' ) A  0 ( Z ,  .l~ 2, y2)A A ~-~,~n (x ~, = x~---* y'~ = y~)]. 

k-th approximation : 

V.~13y ' ' '  �9 V i " a y "  [A ~b(z, .~J, yJ) ^ A(x{ = x { ' ~  y{ = yf)], 

where the first big conjunction ranges over j between 1 and k (1 -_< j = k ) and the 

second ranges over i between 1 and n, and over j a n d / "  between 1 and k. 

We collect some obvious facts in the next lemma. We will use these pretty 

much without comment later on. 

LEMMA 2.3. 

i) The (k + 1)-th approximation to H (z ) logically implies the k-th approxima- 
tion. 

ii) The Henkin formula H(z)  logically implies each of its approximations. 
iii) The set of approximations to H(z)  is (primitive) recursive. 

PROOF. Obvious. [] 

The converse of 2.3 (ii) is not valid except on resplendent structures. We refer 

the reader to Barwise-Schlipf [2] for the few simple facts we use about 

resplendent* models. The notation ~ < ~192 indicates that ~ < 92 and that for 

any E[ formula with parameters from ~92 which holds in 92 also holds in ~/~2. 

THEOREM 2.4. Let ~L)2 be a structure for L. The following are equivalent*: 
i) ~ is resplendent; i.e., for all 92, ~ < 92 implies T)2 < ~192. 
ii) For each Henkin formula H(z) ,  ~ is a model of 

Vz [ H ( z ) ~  ^ A p p . ( z ) ] ,  

where Appu(z )  is the set of first order approximations to H(z) .  

PROOF. The implication (ii) :ff (i) is immediate by Theorem 2.2. To prove 

' All saturated and special models are resplendent (see theor. 5.3.1 and ex. 5.3.5 in 
Chang-Keisler  [3]) so the reader is welcome to use these notions in place of resplendence below. This 
is really making life harder, however, since it is easy to see that resplendent models exist in all 
powers. See [2]. 

The condition given in (i) is not the correct delinition of resplendence if L is countable infinite. 
The implication (ii)--~ (i) is the only result of this paper which does not hold for countable languages. 
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(i) ~ (ii), we use the Ill reflection principle for resplendent models, due to 

Schlipf [15] and found as 2.4 (vi) of [2]. This states that any II] formula (the dual 

of a Ell formula) which holds in ~Y~ of some z also holds in some (actually all) 

countable, recursively saturated elementary submodels of ~ .  Thus it suffices to 

assume that ~l~ is countable, recursively saturated, satisfies A p p , ( z )  and prove 

that ~IR~ H(z ).We simplify the notation in the proof by considering a simple but 

typical case, namely where H(z)  is: 

Vx13yl 

l 4~(z, x,, Yh X2, y2). 
Vx23y2 J 

The first couple of approximations, written out in detail, are: 

~t~XlX2" ~ 1 1 1 1 X I  l x  First approximation: I 1 ylyz~b(Z, Xl, yl, 2, y2) 

Second approximation: Vx[x~3y]y~Vx~x~3y2,y~ ~b(z, x[, y], x~, y~)^ 

2 2 2 1 2 1 ~b(Z,X~,yl, x2, y2)A(Xl X~--~ y ~1 = = X~--~ = y l ) ^ ( x 2  y~ = y,~). 

Let ~b~ be the k-th approximation. Let ~b~(z, x1,,y'l,x],y~) be the result of 

stripping the first four quantifiers Vx]x~3y[y~ from qJ~ In fact, let 

~+1 (z, x ' l , ' '  ", y~+l) be the result of stripping the first four quantifiers off ~b~, at 

least if i + 1 =< k. The formula ~b~ has had all the quantifiers (except those hidden 

in ~b) stripped of[ so we let ~ be ~ for i _-> k. Notice that 0~ and ~b~,, have the 

same free variables and that if k' ~- then ~b~,. logically implies ~bL Given all this 

notation, we can begin the proof in earnest. Let 

(*) (a11, a~) ,  (a~,, a ~ ) , . .  �9 ( a L  a ~ 
, 2 ) ,  " " " 

be an enumeration of the countable set M x M. We want to define a sequence 

(**) 

such that, for each i, 

(1) 

(bl, b~), (bL b22), ' '  ", (b~, b~), �9 �9 �9 

$1R~ ~b(z, al, bl, a~, b~) 

and such that the expressions 

Gl (a l )  = b l ,  and G2(a~)--b~ 

define functions GI, G2 from M into M, which will show that YYR~H(z). To 

make sure that the above expressions make GI and G2 well-defined, we need to 

satisfy the following conditions as we define the sequence (**)" 
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(2) a~ = a~' implies b{ = b~', and 

(3) a~ = a~' implies b~ = b~'. 

The first order approximations of H(z)  are designed to insure that (1)-(3) can be 

fulfilled. The sequence (**) is defined by induction. Since ~ ~ AppH (z), since gl2 

is recursively saturated, and since 6~,, implies ~ ,  for k '>- k, there is a pair (b[, b~) 
such that ~1~ is a model of 

qJ~,(z, a'~, bl~, a~, b~), 

for all k. By the same argument, we can find (b~,b~) such that ~ satisfies 

~b~ (z, a'l, blz, a2 ~, b~,-. . ,  al, b~, a~, b~), 

for all k. Given the meaning of ~O~, we see that the sequence does indeed satisfy 

(1)-(3). [] 
The following sequence of corollaries is not directly related to the method we 

are discussing, but is included to show that the Craig Interpolation Theorem is a 

simple consequence of Theorem 2.4. 

COROLLARY 2.5. Let T)~ be a resplendent model and let Hdz  ) and Hffz) be 
Henkin formulas which define disjoint relations on 9~. There are approximations 
01(z ) and Off z ) of Hi and H2 such that 01 and 02 define disjoint relations on ~ .  

PROOF. Thisis immediate from 2.4. [] 

COROLLARY 2.7. (Craig Interpolation Theorem). Let YG and YG be disjoint "Z~ 

definable classes of L-structures. There is an elementary Y( (definable by a single 
sentence of L) containing Y{~ and disjoint from Y{2. 

PROOF. By 2.2 we may assume that Y(, is defined by a Henkin sentence Hi. 

We claim that there is some approximation of H1 whose class ~ of models 

separates ~1 from Y{:. If not, then the set AppH, tO App,2 is consistent and hence 

has a resplendent model ~!R. But then, by 2.4, ~ is in both Y{, and YG. [] 

For simple applications of the method of straightening out a Henkin quantifier 

(as in Section 3), Theorem 2.4 will suffice. For more complicated examples (as in 

[2] especially, but also in Section 6), it behoves us to prove a result which allows 

us to piece an infinite number of Henkin formulas together. 

THEOREM 2.8. Let {H, ( z z ' "  zt~,~) I n < ~0)} be a recursive set of Henkin 

formulas of the form H,(z  ) = 
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Vx~3y, 

Vxg~.~3yg~.~ 

(~. (Z, Xl, y l , "  " ' ,  Xg(.), Ys(-)), 

where f and g are nondecreasing recursive functions and where (c~.+~---~ c~.) is 

logically valid. Let ~Y~ be a resplendent model of each form ula 3 zH,  (z ). Then T~ 

is a model of: 

Vx~3y~ 

::lzl �9 �9 �9 z. " ' '  Vx~t.~::]ygr A ,<~c~n (z ,  x , ,  y l ,  �9 �9 �9 ) .  

PROOF. Introduce a recursive expansion L '  of L by adding constant symbols 

cl, c2 , . . ,  and function symbols G1, G 2 , ' "  and consider the theory T' whose 

axioms are all expressions of the form 

V x , " ' '  Vx~.~b. (Cl,"" ", ci~.~, x~, Gl(xO," " ", x~<.~, G~,~(x~.~)). 

The hypothesis implies that the theory T h ( ~ )  of ~ is consistent with each finite 

subset of T'. Since ~ is resplendent, ~ can be expanded to a model of T', by [2], 

2.4 (v). But this is exactly the meaning of the conclusion of the theorem. [] 

3. The first order properties of models with involutions 

An involution is simply a nontrivial automorphism f of order 2, f2 = identity. 

We illustrate the method of axiomatizing nearly axiomatizable classes with the 

simple case where Y{ is the class of all L-structures with involutions. 

LEMMA 3.1. The class of models with involutions is nearly axiomatizable. 

PROOF. This follows immediately from Lemma 1.1 since S has a model with 

an involution if and only if S is consistent with the following sentence involving a 

new symbol f:  
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:::l z (fz / Z ) A V x, y [ffx = X A [ xEy ~, fxEfy )]. 

We are treating the special case where L has only one binary symbol E, but an 

obvious modification takes care of the general case. [] 

Having restricted ourselves to the special case where L has only a single 

binary symbol in the above proof, we might as well continue to treat this special 

case below. 

LEMMA 3.2. 

where H(z)  is: 
A structure ~t~ has an involution iff it is a model of 3zH(z),  

Vxo3yo } 

Yx~3y~ 

t Xo= Z---~ yo~ z 
Xo = xl ---* yo = yl 

xoEx~ ~ yoEyl 

xl = yo---* Yl = Xo. 

PROOF. First write out the Skolem form of H(z)  as a formula involving two 

unary functions G~ and G2. The second conjunct in the matrix of H(z)  implies 

that G~= G2. Rewriting it with one symbol G it says exactly that t3 is an 

involution with G (z) # z. [] 

All we would have to do now is to straighten out 3zH(z).  On doing so, 

however, one notices that the theory can be made more understandable by 

changing bound variables, throwing in some redundant  conjuncts and permuting 

some quantifiers. 

DEFINITION. Let Inv be the first order theory whose axioms are all prenex 

sentences beginning with a quantifier string 

3zVxo3yoVx13yl �9 �9 �9 Vxk 3yk 

followed by a conjunction of formulas of the following forms: 

(x, = z - - ,  y, ~ z )  

( x ,  = x ,  ~ y ,  = yj)  

(y, = x, ~ yj = x , )  

(x, Exj ~ y,Eyj). 

THEOREM 3.3. Any structure ~ with an involution is a model of Inv. Any 
resplendent model of Inv has an involution. 
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PROOF. Let jr be an involution of ~ff~, f ( z )  ~ z. For  any x, pick y, = jr(x,). This 

clearly makes all the above  conjunct ions  true. Now let ~R be a resplendent  model  

of Inv, and let H ( z )  be as in 3.2. Consider  any sentence of the form 3z~b(z), 

where tp E AppH(z) .  This sentence has the form 

3ZVXoX13yoylVx2x3::ly2y3" ' �9 VX2kX2k§ 

followed by a conjunct ion of formulas as above.  Since Vx,::ly, Vx~+,3y,+l is 

s t ronger  than Vx,x,§ 3z~k(z) is implied by a sentence of Inv. Thus  ~ff~ is a 

model  of each such 3ztp(z). By the recursive saturation of ~ ,  there is a z such 

that ~1= A p p u ( z ) .  By T he o re m  2.4, 9921= H(z) ,  so ~ has an involution, by 3.2. 
[ ]  

COROLLARY 3 .4 :  The theory Inv is a set of axioms for the first order properties 

of models with involutions. 

PROOF. This is an immedia te  consequence  of the above theorem and the fact 

that every model  has a resplendent  e lementary  extension, see [2]. [ ]  

It is fairly obvious  that no model  of ZFC,  Z e r m e l o - F r a e n k e l  set theory with 

choice, has an involution. Hence  Z F C I - 7 0 ,  for some 0 E Inv. What  is the 

simplest such 0? On the o ther  hand, Cohen [4] proves that Z F  does have models  

with involutions. Would  it be any simpler to prove directly that Z F  is consistent 

with each axiom of Inv. 

Actually,  in the case of ZF, T h e o r e m  3.3 can be improved.  One  can show that 

any countable  non -w-mode l  of Z F  + Inv has an involution , even those that are 

not recursively saturated.  (This follows directly f rom theor.  2.7 in the appendix 

of [0], plus the observat ion that, for ZF, the existence of  an involution is a 

strict-Y,l statement ,  not just ~',, and hence is H ~ on Cov,~, for ~ countable.)  

Fr iedman has recently obta ined much s t ronger  results on models of Z F  with 

involutions. 

There  is nothing sacred about  au tomorphisms  of order  2 in all of the above. 

We could equally well have axiomatized the first order  propert ies  of models with 

au tomorphisms  of order  33. One  would just replace the third sort of conjunct  

above with those of the form 

[(x,, = y,,,) A (X,,, = y,,,)A""" A (X,~ = y,,)-----) (y,,, = X,,)]. 

' Shelah informs me that he discovered this result some years ago in response to an open 
problem list in a preprint version of Chang-Keisler [3]. Both the problem and its solution seem to 
have disappeared in the final version. 
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4. The first order properties of homomorphisms which have splittings 

Let f be a homomorphism of 93~ onto 92, where ~ and 92 are L-structures.  We 

can think of the homomorphism f as the structure (~!R, 92, f )  for a two-sorted 

logic L *. We use x ' s  (with sub and superscripts) for variables over  ~ and y ' s  for 

variables over  92. 

A splitting for a homomorphism f from ~ onto 92 is an embedding g of ~ into 

93~ such that f (g  (y)) = y, for all y E N. 

LEMMA 4.1. The class of homomorphisms which have splittings is definable by 
a Ell sentence and hence is nearly axiomatizable. 

In this section we axiomatize those first order properties which must hold of all 

homomorphisms which have splittings. Or, looked at negatively, we axiomatize 

those first order properties P such that "not P "  can obstruct the existence of a 

splitting. 

f has a splitting iff (932, 92, f )  is a model of the following Henkin LEMMA 4.2. 
sentence : 

Vy03Xo } f 
Vy~3x~ 

(We are treating the case where L 

lemma.)  

yo= yl~x0= Xl 
f(xo) = yo 

R(yo, y,)---~ R(xo, xl). 

has only one binary R to illustrate the 

PROOF. The first line makes the two Skolem functions one, the second makes 

this function an inverse to f and the third makes it a homomorphism.  It must of 

necessity be one-one. [] 

Now we simply straighten out the above Henkin sentence. 

DEFINITION. Let Spl be the first order theory of L* whose axioms are all 

prenex formulas beginning with a quantifier string 

Vyo3xoVy13xl . �9 �9 Vyk 3xk 

followed by a conjunction of formulas of the following forms: 

(y, = yj ~ x, = xj) 

i f ( x , )  = y,)  

(R(y,, yj)---~ R(x,,xj)).  
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A typical consequence of Spl is the sentence 

VXoXl [R (Xo, x,)^f(x,i) = f(x,)---~ R (Xo, Xo)V R (xl, xl)]. 

THEOREM 4.3. Let f be a homomorphism such that (~J~, ~ ,  f )  is resplendent. 

Then f has a splitting iff ( ~ ,  9~, f )  ~ Spl. 

PROOF. The proof is entirely analogous to the proof of Theorem 3.3. [] 

COROLLARY 4.4. Spl is a set of axioms for the first order properties of 
homomorphisms with splittings. 

PROOF. Immedia te  from 4.3 and the existence of resplendent models. [] 

5. Multiplicative groups of fields 

Let G = (G, .,-~, 1) be an abelian group, written in multiplicative notation. Let 

G U {0} be the structure G with a zero element adjoined. To be definite, G U {0} 

is the structure (G U {0},.,-~, 1,0) with 0.  x = x �9 0 = 0, for all x, and 0 -~ -- 0, or 

0 ~ undefined, if you don' t  mind partial functions. We identify G with G U {0}. 

Fuchs [8], problem 69, asks for a necessary and sufficient condition for G to be 

the multiplicative group of some field, i.e., for there to exist some binary 

function + on G U {0} so that the expanded structure is a field. Sabbagh [14] 

shows there is no first order solution to this problem by showing that the 

multiplicative group of real numbers is elementarily equivalent to a group which 

is not the multiplicative part of a field. This suggests the problem of finding the 

axioms for those G such that some G' =- G is the multiplicative part of a field. 

This is a natural for the method of straightening out Henkin quantifiers. 

LEMMA 5.1. The class of structures G U {0} such that G is the multiplicative 

part of some field is definable by a E I~ sentence, and hence is nearly axiomatizable. 

Before beginning our axiomatization, we should point out some sentence true 

of all such groups which is not true of all abelian groups. For example,  the 

sentence expressing 

" there  are at most n x such that x" = 1" 

holds in the multiplicative part of any field. 

LEMMA 5.2. A n  abelian group G is the multiplicative part of some field F iff G 

is a model of the following Henkin sentence: 
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Vx~3y, 

Vx53y5 

A ,,, (x, = xj ~ y, = yi) 

(x~ = O~ y~ = I) 

(x~= y~y2 = xl) 

((X2 ~ 0)A(X3 = y , "  y2)A(X4 = X2-')^(Xs = X," X4) "-'~ (y3 = X2" y3)). 

PROOF. If yOU write out the Skolem form of this sentence, you notice that all 

five functions are equal, say to g, by the first line. The next three lines express, 

respectively, 

g(0) = 1 

g ( g ( x ) ) = x ,  for all x 

g ( g ( x ) . g ( y ) ) = y . g ( x . g ( y - ~ ) ) ,  for all x and all y ~ 0 .  

If G is the multiplicative part of some field, then g(x )= 1 - x  satisfies all the 

above. On the other hand, Dicker [6] shows that if G U {0} has a g satisfying the 

above, then G is the multiplicative part of a field. []  

We could have written out the natural Henkin sentence expressing the 

existence of a binary function + which is an Abelian group and distributes 

properly with respect t o . ,  but this is a much more complicated sentence. 

DEFINITION. Let Fld be the set of first order approximations to the Henkin 

sentence given in 5.2, plus the axioms for abelian groups. 

By now there is no point in writing FId out more explicitly, especially since it is 

largely unintelligible. Still, it does solve the problem. 

THEOREM 5.3. Let G be a resplendent group. Then G is the multiplicative part 

of a field F iff G is a model of Fld. 

COROLLARY 5.4. FId axiomatizes the first order properties of those G which are 

the multiplicative parts of fields. 

COROLLARY 5.5. If G is finite, or if G is countable and recursively saturated, 

then G is the multiplicative part of a field iff G ~Fld.  

PROOF. In either case G is resplendent, by [2], so the result follows from 5.3. 
[]  

Problem. What are all the resplendent abelian groups? 
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6. The first order properties of pairs of cardinals 

The examples  in the previous sections were chosen for their simplicity and 

relevance to genuine mathemat ical  problems.  In this section we present  the 

archetypal  example of a nearly axiomatizable class because it will serve as a good  

introduct ion to the problem we discuss in [1]. 

We assume that the basic language L has a unary symbol U. An  L structure 

~ = (M, U,- �9 ") is a two cardinal model  if C a r d ( M )  > C a r d ( U )  => 1,10. Vaught  [17] 

proved that any theory S with a two cardinal model  has one with C a r d ( M )  = N~ 

and C a r d ( U ) =  No. His proof  also gave the following: 

LEMMA 6.1. The class of  two cardinal models  is nearly axiomatizable.  

PROOF. Vaught ' s  p roof  shows that S has a two cardinal model  iff S has a 

model  ~ with an 9 o  < 9 ,  ~27~0 ~ ~Y~ and U '~" = U ~. It is easy to write this down 

as a recursive theory in an expansion L '  of L with a new unary symbol Mo. The  

result follows f rom 1.1. The  real trick to axiomatizing this class, though,  as 

noticed by Keisler, is to use a s t ronger  condit ion.  Vaugh t ' s  proof  also shows that 

S has a two cardinal model  iff S has a model  ~ with an ~92o as above  but with 
- ~,,.  [ ]  

Knowing 6.1, Vaught  asked for an explicit set of axioms for two cardinal 

models.  These were given by Keisler [12]. We show how to get a similar set of 

axioms by straightening Henkin  formulas.  

LEMMA 6.2. Let ~ = (M, U , "  ") be a resplendent L-structure. The following 

are equivalent : 

i) ~R is isomorphic to some proper elementary submodel  ~1~,, = (Mo, U, �9 ") with 

the same U. 

ii) For each finite set s o f  formulas  of  L, M is a model  of  3 zHs (z  ), where H~ (z ) 

is the following Henk in  formula (s = s ( x , . . ,  x , )  is assumed  to have its free 

variables among x ~ . . . x , ) :  

Vx~3y~ 

Vx,::ly, 

V u 3 v  

^ ,.i (x, = xj ~ y, = yj) 

(y, J z )  

(U(U)AX,  = V ---, y, = U) 

A ~ , ( q , ( x l . . .  x . ) ~  q , ( y ,  �9 �9 �9 y . ) ) .  
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PROOF. To  p rove  (i) ::> (ii), let ~Pr be a p rope r  e l emen ta ry  submodel  of 

with the same  U and let f :  ~ ~ ~r Let  z E ~ - ~Ro. To  show that  ~ is a mode l  

of  Hs (z ) ,  choose y, as f (x , )  and, for  u E U, choose  v = f - ~ ( u ) .  To  p rove  

(ii) ~ (i), we use T h e o r e m  2.8. By that  result, there  is a z E M such that  ~ is a 

mode l  of: 

V u 3 v  

V x ~ 3 y l  

V x . 3 y .  

A ,,~ (x, = x, ~ y, = yj) 

( y , ~  z )  

( U ( u ) A x , =  v ~  y , =  u )  

^ ~ ( ~ , ( x , . . .  x . ) ~  ~,(yl �9 �9 �9 y.)) .  

This asserts  the existence of two funct ions f , g  such that  f is an e l emen ta ry  

e m b e d d i n g  of ~92 into itself with z ~  range(f ) ,  and such that  for  all u E U, 

f ( g ( u ) )  = u. Thus  U is in the range  of f so if we let ~0~ be the range of f, we have  

(i). [ ]  

DEFINITION. Let  V a u  be the first o rder  theory  whose axioms are all p renex  

formulas  beginning with a quant if ier  string 

3 z V x ~ u l 3 y l v l  �9 �9 �9 V x . u . 3 y . v .  

fol lowed by a conjunct ion of formulas  of the following forms:  

(x, = xj ~ y, = yj) 

(u, = uj ---, o, = vj) 

( U ( u , ) ^ x ,  = v, ~ y, = u,)  

( y , #  z )  

( 6 ( x ~ - . . x . ) ~ 6 ( y , " "  Y.)). 

This  is not exactly the set of ax ioms arr ived at in Keisler  [12], but  they are clearly 

equivalent .  
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THEOREM 6.3. Let ~IR = (M, U, - ' - )  be a resplendent structure. The following 

are equivalent: 

i) ~f~ is elementarily equivalent to a two cardinal model. 

ii) ~ V a u .  

iii) ~R is isomorphic to a proper elementary submodel of itself with the same U. 

iv) ~ has a proper elementary submodel with the same U. 

PROOF. The main implication, given Vaught's work, is (ii) f f  (iii). So assume 

(ii). As in the previous results (3.3, 4.3) it is easy to see that each formula of the 

form 3ztp(s),  for tp in some App, , (z) ,  is implied by some formula in Vau. This 

just amounts to permuting quantifiers. Thus, by 6.2, (iii) holds. 

To prove ( i i i )~  (ii), let f be the elementary embedding, z ~  rng(f). Let 

y, = f(x,) and, for u, E U, let v, = f-l(u,). This shows that ~I)2~Vau. 

The implication (iii) ~ (iv) is trivial. The implication (iv) ~ (i) follows from 

the result of Vaught mentioned in the proof of 6.1. This leaves us with the proof 

of (i) ~ (iii). Let T" be the theory in an expansion of L with unary M0 and unary 

f expressing that ~Yr < ~ and f: ~ "=- No. By the second result of Vaught used in 

6.1, Th(M) is consistent with T". Since ~R is resplendent, some expansion of ~ff~ is 

a model of T", by 2.4(v) in [2]. Thus (iii) holds. [] 

COROLLARY 6.4. Vau is a set of axioms for two cardinal models. 

PROOF. Immediate from6.3. [] 

Gregory, in a recent paper in the JSL, has found a much better set of axioms, 

but he has to work much harder, too. 

COROLLARY 6.5. Let TR be a countable, recursively saturated model of Vau. 
There is an elementary extension ~)~' of  YIR of  power N1 such that U M = U M'. 

PROOF By [2], ~ is resplendent and homogeneous. By 6.3, ~ is isomorphic 

to a proper elementary extension of itself with the same U. By the usual proof of 

Vaught's Theorem, as given in Chang-Keisler [3], for example, we can build ~R' 

as the union of an to~-chain of structures each isomorphic to ~ .  [] 

7. Game sentences and other concluding remarks 

Once we have the set of axioms for a nearly axiomatizable class ~(, it is usually 

easy to see that they do indeed provide a set of axioms, without ever considering 

Henkin formulas. We have deliberately presented our examples in a way which 

emphasizes the way Henkin formulas help us find the axioms in question. The 
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only problem that can arise, as illustrated in section 6, is that it may not be at all 

obvious how to go from a particular T' (as in Lemma 1.1) to a Henkin formula. 

The idea of approximating Henkin formulas was suggested to us by some 

analogous results of Keisler [10] on approximating certain types of infinitary 

game formulas by means of finite expressions, on saturated models. (Keisler 

used his approximations to prove certain preservation theorems, in [11]. It is not 

difficult to see how to prove his results via resplendent models and Henkin 

formulas, in a similar way.)The g a m e  f o r m u l a  (more accurately recursive closed 

game formula) associated with the Henkin formula H ( z )  

Vx,,3y. 

#~(z, x~, y , , - ' - ,  x,. y,,) 

is the natural limit of the finite approximations defined in section 2. That is, it is 

the "formula"  ~d(z) with infinite quantifier prefix 

V x ~ 3 y ~ . . . V x 3 y  ~ . . .  

and whose matrix consists of the conjunction of all ~b(z,~y j) and all (x~ = 

x~'---~ y~ = yi'). The proof of 2.4 shows that on countable structures ~:IR, ~R ~ H ( z )  

iff ~ ~d(z). Combining this with Theorem 2.2, gives a simple new, and much 

more explicit, proof of Svenonius' Theorem to the effect that every Ell formula is 

equivalent, on countable structures, to a recursive closed game formula. (See 

theor. 6.8 of [0].) Our original proof of Theorem 2.4 went by means of proving 

this directly and then using exercise 7.17 (iii) of [0]. It seemed more appropriate, 

in a talk dedicated to Abraham Robinson, to deal with finitary first order logic, 

without the detour through game formulas. Makkai suggested to us that this new 

explicit form for Svenonius' Theorem is important in its own right, and should be 

pointed out here. 
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